Fructose-1,6-bisphosphate has anticonvulsant activity in models of acute seizures in adult rats.
نویسندگان
چکیده
A variety of observations suggest that decreasing glycolysis and increasing levels of reduced glutathione, generated by metabolism of glucose through the pentose phosphate pathway, would have an anticonvulsant effect. Because fructose-1,6-bisphosphate (F1,6BP) shifts the metabolism of glucose from glycolysis to the pentose phosphate pathway, it was hypothesized to have anticonvulsant activity. The anticonvulsant activity of F1,6BP was determined in rat models of acute seizures induced by pilocarpine, kainic acid, or pentylenetetrazole. The efficacy of F1,6BP was compared with that of 2-deoxyglucose (2-DG; an inhibitor of glucose uptake and glycolysis), valproic acid (VPA), and the ketogenic diet. One hour before each convulsant, Sprague Dawley rats received either saline (as seizure controls), F1,6BP (0.25, 0.5 or 1 g/kg), 2-DG (0.25 or 0.5 g/kg), or VPA (0.3 g/kg). Additional animals received the ketogenic diet (starting at 20 or 60 d old). Time to seizure onset, seizure duration, and seizure score were measured in each group. F1,6BP had dose-dependent anticonvulsant activity in all three models, whereas VPA had partial efficacy. 2-DG was only effective in the pilocarpine model. The ketogenic diet had no effect in these models. F1,6BP was also partially effective when given at the first behavioral seizure after pilocarpine. Administration of sodium lactate, which bypasses the block in the glycolytic pathway, abolished the anticonvulsant activity of 2-DG in the pilocarpine model, but only decreased the efficacy of F1,6BP. These data demonstrate that F1,6BP has significant anticonvulsant efficacy.
منابع مشابه
Methanol leaf extract of Albizia chevalieri harms possesses anticonvulsant activity in acute and chronic models of epilepsy
Background & Aim:Albizia chevalieri Harms (Mimosaceae) is widely used in traditional medicine to treat various kinds of diseases such as epilepsy, diabetes mellitus, hemorrhoids, asthma, leprosy and gonorrhoea. The effectiveness of its leaf extract in the management of epilepsy is widely acclaimed among communities in northern Nigeria. This study aimed at evaluating th...
متن کاملAnticonvulsant Effect of Cicer arietinum Seed in Animal Models of Epilepsy: Introduction of an active Molecule with Novel Chemical Structure
Background: Cicer arietinum (Chickpea) is one of the most important harvests in the world with high nutritional value. Lack of essential oils in the seeds of Chickpea is an advantage in search for drug-like molecules with less toxicity. We evaluated anticonvulsant effect of C. arietinum in common animal models of epilepsy. Methods: Dichloromethane extract was obtained from C. arietinum seeds by...
متن کاملEffects of fructose-1,6-bisphosphate on morphological and functional neuronal integrity in rat hippocampal slices during energy deprivation.
D-fructose-1,6-bisphosphate, a high energy glycolytic intermediate, attenuates ischemic damage in a variety of tissues, including brain. To determine whether D-fructose-1,6-bisphosphate serves as an alternate energy substrate in the CNS, rat hippocampal slices were treated with D-fructose-1,6-bisphosphate during glucose deprivation. Unlike pyruvate, an endproduct of glycolysis, 10 mM D-fructose...
متن کاملAnticonvulsant Activity of the Aqueous Leaf Extract Of Croton Zambesicus (Euphorbiaceae) In Mice and Rats
To determine the anticonvulsant activity of the leaf extract of Croton zambesicus in mice and rats, and in order to verify the traditional use of the plant in the treatment of epilepsy. The pentyleneterazole (PTZ) and the maximal electroshock seizure (MES) models were used for assessing the anticonvulsant effects of the aqueous leaf extract in mice and rats. In the PTZ test, the leaf extract ...
متن کاملRelationship between thiol group modification and the binding site for fructose 2,6-bisphosphate on rabbit liver fructose-1,6-bisphosphatase.
A thiol group present in rabbit liver fructose-1,6-bisphosphatase is capable of reacting rapidly with N-ethylmaleimide (NEM) with a stoichiometry of one per monomer. Either fructose 1,6-bisphosphate or fructose 2,6-bisphosphate at 500 microM protected against the loss of fructose 2,6-bisphosphate inhibition potential when fructose-1,6-bisphosphatase was treated with NEM in the presence of AMP f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 27 44 شماره
صفحات -
تاریخ انتشار 2007